Multiscale Image Segmentation Using Joint Texture and Shape Analysis
نویسندگان
چکیده
We develop a general framework to simultaneously exploit texture and shape characterization in multiscale image segmentation. By posing multiscale segmentation as a model selection problem, we invoke the powerful framework ooered by minimum description length (MDL). This framework dictates that multiscale segmentation comprises multiscale texture characterization and multiscale shape coding. Analysis of current multiscale maximum a posteriori (MAP) segmentation algorithms reveals that these algorithms implicitly use a shape coder with the aim to estimate the optimal MDL solution, but nd only an approximate solution. Towards achieving better segmentation estimates, we rst propose a shape coding algorithm based on zero-trees which is well-suited to represent images with large homogeneous regions. For this coder, we design an eecient tree-based algorithm using dynamic programming that attains the optimal MDL segmentation estimate. To incorporate arbitrary shape coding techniques into segmentation, we design an iterative algorithm that uses dynamic programming for each iteration. Though the iterative algorithm is not guaranteed to attain exactly optimal estimates, it more eeectively captures the prior set by the shape coder. Experiments demonstrate that the proposed algorithms yield excellent segmentation results on both synthetic and real world data examples.
منابع مشابه
A study of contextual modeling and texture characterization for multiscale Bayesian segmentation
In this paper, we demonstrate that multiscale Bayesian image segmentation can be enhanced by improving both contextual modeling and statistical texture characterization. Firstly, we show a joint multi-context and multiscale approach to achieve more robust contextual modeling by using multiple context models. Secondly, we study statistical texture characterization using wavelet-domain Hidden Mar...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Multiscale Image Segmentation
We propose a general unsupervised multiscale featurebased approach towards image segmentation. Clusters in the feature space are assumed to be properties of underlying classes, the recovery of which is achieved by the use of the mean shift procedure, a robust non-parametric decomposition method. The subsequent classification procedure consists of Bayesian multiscale processing which models the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000